

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Clortho 0.0.0 documentation

Welcome to Clortho’s documentation!

Contents:

	The Authentication Module

Quick Start

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	import bcrypt

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.exc import IntegrityError

from clortho.auth import UserBase, ActivationError

class SimpleUser(UserBase):
 __tablename__ = 'simple_users'

if __name__ == '__main__':
 engine = create_engine('sqlite:///:memory:')
 session = sessionmaker(bind=engine)()

 SimpleUser.metadata.create_all(engine)

 user1 = SimpleUser(email=u'example@example.com')
 session.add(user1)
 session.commit()

 # Users are unique by email
 try:
 user2 = SimpleUser(email=u'example@example.com')
 session.add(user2)
 session.commit()
 except IntegrityError:
 print "Users are unique by email!"
 session.rollback()

 user1.set_password('pwd')

 assert user1.check_password('pwd')
 assert user1.check_password('pwdd') == False
 assert user1.password_is_set
 assert user1.password_hash == bcrypt.hashpw('pwd', user1.password_hash)

 activation_code = user1.generate_activation_code()
 assert user1.activated == False
 user1.activate(activation_code)
 assert user1.activated

 user1.activated = False
 try:
 user1.activate(activation_code)
 except ActivationError:
 print "Activation codes only work once!"

 new_activation_code = user1.generate_activation_code()
 user1.activate(new_activation_code)
 assert user1.activated

 assert user1.disabled == False
 user1.disabled = True
 assert user1.disabled

 # Password checks fail no matter what if the user is disabled
 assert user1.check_password('pwd') == False

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Clortho 0.0.0 documentation

The Authentication Module

	
exception clortho.auth.ActivationError[source]

	

	
class clortho.auth.UserBase(email)[source]

	The UserBase class subclasses sqlalchemy’s default
declarative base to provide a schema for basic user authentication.
UserBase provides fields and methods for setting and
checking a password, generating and checking an activation code, and
disabling the user entirely. The email field is unique.

This class cannot be used on its own. In order to use this
class in your application, subclass it and define the
__tablename__ attribute.

	
__init__(email)[source]

	

	Parameters:	email – Required. The user’s email address. Validity
as an email address is not enforced; any string will be
allowed.

Create a new UserBase object. By default,
password_is_set, disabled, and
activated are all initialized to False.

	
activate(activation_code_plaintext)[source]

	

	Parameters:	activation_code_plaintext – The activation code to check.
If its hash matches activation_code_hash, the user
will be activated.

Take the plaintext activation code that was sent to the user,
generally via e-mail. Hash the plaintext and compare it against
activation_code_hash. If they are the same, set
activated to True. Finally, call
generate_activation_code() in order to prevent
reactivation of the account using the same code. Since we don’t
save the new reactivation code, it is useless. If the account
becomes inactive in the future for any reason,
generate_activation_code() must be called again in order
to reactivate.

If activation fails, an exception is raised and no change is made
to the model.

	
check_password(password_plaintext)[source]

	

	Parameters:	password_plaintext – The plaintext of the password to check.

If password_is_set is False or disabled is
True, return False. Otherwise, take a plaintext password
string and hash it using bcrypt along with the salt for this user.
If the resulting hash matches the hash in password_hash,
return True. The session can now be considered authenticated
for this user.

	
generate_activation_code()[source]

	Generate a 20 character random code from letters and digits.
This is the activation code that will be sent to the user
(presumably via e-mail) and allow them to activate their account.
The actual code is not stored locally; like a password, it is hashed
and stored in activation_code_hash. The plaintext
activation code is returned to the caller. In order to activate
the user with the plaintext activation code, call activate().

	
set_password(password_plaintext)[source]

	

	Parameters:	password_plaintext – The plaintext of the password to set.

Given a plaintext password, generate a salted hash using
bcrypt. Set password_is_set to True and
password_hash to the generated hash. The user can now
be authenticated with the plain text password and
check_password().

	
activated = Column(None, Boolean(), table=None)

	activated is True if the user has completed the e-mail
verification process using activation_code_hash.

	
activation_code_hash = Column(None, String(length=80), table=None)

	The activation_code_hash is set to a hash of the activation
code that is generated by generate_activation_code() and
subsequently e-mailed to the user. This code is immediately
forgotten by the application; only the bcrypt hashed version of it
is stored in activation_code_hash. The activation code can
be checked using activate().

	
disabled = Column(None, Boolean(), table=None)

	Prevent check_password from returning True, regardless of the
password supplied.

	
email = Column(None, Unicode(length=255), table=None)

	The user’s email. The uniqueness is enforced at the database level.

	
id = Column(None, Integer(), table=None, primary_key=True, nullable=False)

	The primary key and id which will always be used to reference a user.

	
password_hash = Column(None, String(length=80), table=None)

	The hash of the user’s password, with salt, as generated by bcrypt.

	
password_is_set = Column(None, Boolean(), table=None)

	password_hash might be empty, so we explicitly record
whether or not the user has a password set.

 Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Clortho 0.0.0 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 clortho	

 	
 	
 clortho.auth	

 Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Clortho 0.0.0 documentation

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | P
 | S
 | U

_

 	

 	__init__() (clortho.auth.UserBase method)

A

 	

 	activate() (clortho.auth.UserBase method)

 	activated (clortho.auth.UserBase attribute)

 	

 	activation_code_hash (clortho.auth.UserBase attribute)

 	ActivationError

C

 	

 	check_password() (clortho.auth.UserBase method)

 	

 	clortho.auth (module)

D

 	

 	disabled (clortho.auth.UserBase attribute)

E

 	

 	email (clortho.auth.UserBase attribute)

G

 	

 	generate_activation_code() (clortho.auth.UserBase method)

I

 	

 	id (clortho.auth.UserBase attribute)

P

 	

 	password_hash (clortho.auth.UserBase attribute)

 	

 	password_is_set (clortho.auth.UserBase attribute)

S

 	

 	set_password() (clortho.auth.UserBase method)

U

 	

 	UserBase (class in clortho.auth)

 Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

 _static/down.png

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Clortho 0.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Clortho 0.0.0 documentation »

 All modules for which code is available

		clortho.auth

 © Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

_modules/clortho/auth.html

 Navigation

 		
 index

 		
 modules |

 		Clortho 0.0.0 documentation »

 		Module code »

 Source code for clortho.auth

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
#
Copyright 2012 ShopWiki
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

import bcrypt
import random
import string
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column
from sqlalchemy.types import Integer, Unicode, String, Boolean

[docs]class ActivationError(Exception):
 pass

Base = declarative_base()

[docs]class UserBase(Base):
 '''
 The :class:`UserBase` class subclasses sqlalchemy's default
 declarative base to provide a schema for basic user authentication.
 :class:`UserBase` provides fields and methods for setting and
 checking a password, generating and checking an activation code, and
 disabling the user entirely. The :attr:`email` field is unique.

 This class **cannot be used on its own**. In order to use this
 class in your application, subclass it and define the
 :attr:`__tablename__` attribute.
 '''

 __abstract__ = True

 id = Column(Integer, primary_key=True)
 '''
 The primary key and id which will always be used to reference a user.
 '''

 email = Column(Unicode(255), unique=True)
 '''
 The user's email. The uniqueness is enforced at the database level.
 '''

 password_hash = Column(String(80))
 '''
 The hash of the user's password, with salt, as generated by bcrypt.
 '''

 password_is_set = Column(Boolean())
 '''
 :attr:`password_hash` might be empty, so we explicitly record
 whether or not the user has a password set.
 '''

 disabled = Column(Boolean())
 '''
 Prevent check_password from returning ``True``, regardless of the
 password supplied.
 '''

 activated = Column(Boolean())
 '''
 :attr:`activated` is ``True`` if the user has completed the e-mail
 verification process using :attr:`activation_code_hash`.
 '''

 activation_code_hash = Column(String(80))
 '''
 The :attr:`activation_code_hash` is set to a hash of the activation
 code that is generated by :meth:`generate_activation_code` and
 subsequently e-mailed to the user. This code is immediately
 forgotten by the application; only the bcrypt hashed version of it
 is stored in :attr:`activation_code_hash`. The activation code can
 be checked using :meth:`.activate`.
 '''

[docs] def set_password(self, password_plaintext):
 '''
 :param password_plaintext: The plaintext of the password to set.

 Given a plaintext password, generate a salted hash using
 bcrypt. Set :attr:`password_is_set` to ``True`` and
 :attr:`password_hash` to the generated hash. The user can now
 be authenticated with the plain text password and
 :meth:`check_password`.
 '''

 hashed = bcrypt.hashpw(password_plaintext, bcrypt.gensalt())
 self.password_is_set = True
 self.password_hash = hashed

[docs] def check_password(self, password_plaintext):
 '''
 :param password_plaintext: The plaintext of the password to check.

 If :attr:`password_is_set` is ``False`` or :attr:`disabled` is
 ``True``, return ``False``. Otherwise, take a plaintext password
 string and hash it using bcrypt along with the salt for this user.
 If the resulting hash matches the hash in :attr:`password_hash`,
 return ``True``. The session can now be considered authenticated
 for this user.
 '''

 return (self.password_is_set
 and not self.disabled
 and bcrypt.hashpw(password_plaintext, self.password_hash)
 == self.password_hash)

[docs] def activate(self, activation_code_plaintext):
 '''
 :param activation_code_plaintext: The activation code to check.
 If its hash matches :attr:`activation_code_hash`, the user
 will be activated.

 Take the plaintext activation code that was sent to the user,
 generally via e-mail. Hash the plaintext and compare it against
 :attr:`activation_code_hash`. If they are the same, set
 :attr:`activated` to ``True``. Finally, call
 :meth:`generate_activation_code` in order to prevent
 reactivation of the account using the same code. Since we don't
 save the new reactivation code, it is useless. If the account
 becomes inactive in the future for any reason,
 :meth:`generate_activation_code` must be called again in order
 to reactivate.

 If activation fails, an exception is raised and no change is made
 to the model.
 '''

 hashed = bcrypt.hashpw(activation_code_plaintext,
 self.activation_code_hash)
 if hashed == self.activation_code_hash:
 self.activated = True
 self.generate_activation_code()
 else:
 raise ActivationError('Activation code failed')

[docs] def generate_activation_code(self):
 '''
 Generate a 20 character random code from letters and digits.
 This is the activation code that will be sent to the user
 (presumably via e-mail) and allow them to activate their account.
 The actual code is not stored locally; like a password, it is hashed
 and stored in :attr:`activation_code_hash`. The plaintext
 activation code is returned to the caller. In order to activate
 the user with the plaintext activation code, call :meth:`activate`.
 '''

 alphabet = string.ascii_letters + string.digits
 sr = random.SystemRandom()
 activation_code = ''.join(sr.choice(alphabet) for x in range(20))
 self.activation_code_hash = bcrypt.hashpw(activation_code,
 bcrypt.gensalt())
 return activation_code

[docs] def __init__(self, email):
 '''
 :param email: **Required**. The user's email address. Validity
 as an email address is not enforced; any string will be
 allowed.

 Create a new :class:`UserBase` object. By default,
 :attr:`password_is_set`, :attr:`disabled`, and
 :attr:`activated` are all initialized to ``False``.
 '''

 self.email = email
 self.password_is_set = False
 self.disabled = False
 self.activated = False

 def __repr__(self):
 return "<User('{email}')>".format(**dict(email=self.email))

 © Copyright 2012, Patrick Lawson (ShopWiki).
 Created using Sphinx 1.2.2.

