Clortho Documentation
Release 0.0.0

Patrick Lawson (ShopWiki)

June 16, 2014

Contents

1 The Authentication Module 3
2 Quick Start 5
3 Indices and tables 7

Python Module Index 9

Clortho Documentation, Release 0.0.0

Contents:

Contents 1

Clortho Documentation, Release 0.0.0

2 Contents

CHAPTER 1

The Authentication Module

exception clortho.auth.ActivationError

class clortho.auth.UserBase (email)
The UserBase class subclasses sqlalchemy’s default declarative base to provide a schema for basic user au-
thentication. UserBase provides fields and methods for setting and checking a password, generating and
checking an activation code, and disabling the user entirely. The email field is unique.

This class cannot be used on its own. In order to use this class in your application, subclass it and define the
___tablename___ attribute.

__init__ (email)

Parameters email — Required. The user’s email address. Validity as an email address is not
enforced; any string will be allowed.

Create a new UserBase object. By default, password_is_set, disabled, and activated are
all initialized to False.

activate (activation_code_plaintext)

Parameters activation_code_plaintext — The activation code to check. If its hash matches
activation_code_hash, the user will be activated.

Take the plaintext activation code that was sent to the user, generally via e-mail. Hash the plaintext and
compare it against act ivation_code_hash. If they are the same, set act ivated to True. Finally,
call generate_activation_code () in order to prevent reactivation of the account using the same
code. Since we don’t save the new reactivation code, it is useless. If the account becomes inactive in the
future for any reason, generate_activation_code () must be called again in order to reactivate.

If activation fails, an exception is raised and no change is made to the model.
check_password (password_plaintext)
Parameters password_plaintext — The plaintext of the password to check.

If password_is_set is False or disabled is True, return False. Otherwise, take a plaintext
password string and hash it using berypt along with the salt for this user. If the resulting hash matches the
hash in password_hash, return True. The session can now be considered authenticated for this user.

generate_activation_code ()
Generate a 20 character random code from letters and digits. This is the activation code that will be
sent to the user (presumably via e-mail) and allow them to activate their account. The actual code is not
stored locally; like a password, it is hashed and stored in activation_code_hash. The plaintext
activation code is returned to the caller. In order to activate the user with the plaintext activation code, call
activate ().

Clortho Documentation, Release 0.0.0

set_password (password_plaintext)
Parameters password_plaintext — The plaintext of the password to set.

Given a plaintext password, generate a salted hash using berypt. Set password_is_set to True and
password_hash to the generated hash. The user can now be authenticated with the plain text password
and check_password ().

activated = Column(None, Boolean(), table=None)
activated is True if the user has completed the e-mail verification process using
activation_code_hash.

activation_code_hash = Column(None, String(length=80), table=None)
The activation_code_hash is set to a hash of the activation code that is generated by
generate_activation_code () and subsequently e-mailed to the user. This code is immediately
forgotten by the application; only the berypt hashed version of it is stored in act ivation_code_hash.
The activation code can be checked using activate ().

disabled = Column(None, Boolean(), table=None)
Prevent check_password from returning True, regardless of the password supplied.

email = Column(None, Unicode(length=255), table=None)
The user’s email. The uniqueness is enforced at the database level.

id = Column(None, Integer(), table=None, primary_key=True, nullable=False)
The primary key and id which will always be used to reference a user.

password_hash = Column(None, String(length=80), table=None)
The hash of the user’s password, with salt, as generated by bcrypt.

password_is_set = Column(None, Boolean(), table=None)
password_hash might be empty, so we explicitly record whether or not the user has a password set.

4 Chapter 1. The Authentication Module

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

CHAPTER 2

Quick Start

impo

from
from
from

rt berypt

sgqlalchemy.orm import sessionmaker
sgqlalchemy import create_engine
sglalchemy.exc import IntegrityError

from clortho.auth import UserBase, ActivationError
class SimpleUser (UserBase):
__tablename__ = ’"simple_users’
if _ name_ == '_ main_ ’:
engine = create_engine(’sqglite:///:memory:’)
session = sessionmaker (bind=engine) ()

SimpleUser.metadata.create_all (engine)

userl = SimpleUser (email=u’examplelexample.com’)
session.add (userl)
session.commit ()

Users are unique by email
try:

user2 = SimpleUser (email=u’examplelexample.com’)

session.add (user?2)
session.commit ()

except IntegrityError:
print "Users are unique by emaill!"
session.rollback ()

userl.set_password (' pwd’)

assert userl.check_password (' pwd’)

assert userl.check_password(’pwdd’) == False
assert userl.password_is_set

assert userl.password_hash == bcrypt.hashpw (' pwd’,

activation_code = userl.generate_activation_code ()
assert userl.activated == False

userl.activate (activation_code)

assert userl.activated

userl.password_hash)

44

45

46

47

48

49

50

Clortho Documentation, Release 0.0.0

userl.activated

userl.activate (activation_code)
except ActivationError:
print "Activation codes only work once!"

new_activation_code
userl.activate (new_activation_code)
assert userl.activated

userl.generate_activation_code ()

assert userl.disabled
userl.disabled
assert userl.disabled

Password checks fail no matter what 1f the user is disabled
assert userl.check_password(’pwd’)

Chapter 2. Quick Start

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

Clortho Documentation, Release 0.0.0

8 Chapter 3. Indices and tables

Python Module Index

C
clortho.auth,3

	The Authentication Module
	Quick Start
	Indices and tables
	Python Module Index

